
Datalog and Friends SS 2010

Datalog and Friends

Prof. Dr. G. Lausen, M. Meier, M. Schmidt

28. Juni 2010

Prof. Dr. G. Lausen, M. Meier, M. Schmidt 28. Juni 2010 Seite 1



Datalog and Friends SS 2010 1. Deductive Databases: Datalog 1.1. Motivation and Preliminaries

Deductive Databases: Datalog

Motivation

Datalog: Databases in logic.

Logic-based query language for the relational model with clean and
compact semantics

Resembles the Prolog programming language

Queries are expressed as rules (vs. operational queries in relational
algebra/declarative queries in SQL)

Widely studied in database research, central topics:

Semantics of Datalog
Relationship Datalog vs. relational algebra
Extensions of Datalog
Expressiveness of Datalog and its fragments
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Deductive Databases: Datalog

Datalog Queries: Rules

Queries are expressed as rules

A rule is an implication of the form

H(x)← L1(x , y1), . . . , Ln(x , yn),where

n ≥ 0,
H is a relational symbol,
L1, . . . , Ln are literals (i.e., possibly negated relational atoms, possibly with
constants),
x , y1, . . . , yn are vectors of variables,
R(z) denotes an atomic formula over variables from z (i.e., a formula using
a subset of the variables in z)

H is called head and L1(x , y1), . . . , Ln(x , yn) is called body.

A set of rules is called program
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Datalog: Example Queries

Example

Consider the relational schema: Flight[Company, From, To, Start, End] and the
database instance (specifying daily flight connections):

Company From To Start End

LH FFT BER 9:00 10:00
AA ST NY 9:30 16:00
LH MUE ROMA 10:00 12:00
BA DAL LON 17:00 24:00
LH FFT DAL 8:00 16:00
BA LON NY 10:00 15:00
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Datalog: Example Queries

Which destinations are reachable from Frankfurt (FFT) with direct
flight connection?

FDest(X) ← Flight( , ‘FFT’, X, , )

Note

The placeholder “ ” is a shortcut for a (distinguished) variable that appears only
in the body of the rule.

Which destinations can be reached from Frankfurt (FFT) when
starting at 9:00 and changing the plane at most once?

FDest9am(X) ← Flight( , ‘FFT’, X, ‘9:00’ , )
FDest9am(Y) ← Flight( , ‘FFT’, X, ‘9:00’, ), Flight( , X, Y, , )
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Datalog: Example Queries

Which destinations can be reached from Frankfurt (FFT)?

DestRec(X) ← Flight( , ‘FFT’, X, , )
DestRec(Y) ← DestRec(X), Flight( , X, Y, , )

Which destinations can be reached from Frankfurt (FFT) taking
only Lufthansa (LH) flights?

LHDestRec(X) ← Flight(‘LH’, ‘FFT’, X, , )
LHDestRec(Y) ← LHDestRec(X), Flight(‘LH’, X, Y, , )

All destinations that can be reached from Frankfurt except those for
which a Lufthansa-only connection exists.

Destination(X) ← DestRec(X), ¬ LHDestRect(X)
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Datalog: Basics

Additional Definitions

Consider a Datalog rule of the form

H(x)← L1(x , y1), . . . , Ln(x , yn)

If n = 0, then its body is empty and the rule is called fact

Relation symbols that appear solely on the body of rules are called
extensional ; the remaining relational symbols are called intensional

Accordingly, we distinguish between the extensional database (EDB) and
the intensional database (IDB)
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Datalog: Basics

From Datalog Rules to Datalog Programs

A set of rules ρ is called program Π.

Let Π be a program. The dependency graph of Π is a directed, labeled
digraph (V ,E ) containing two types of edges (positive and negative edges)
defined as follows:

V is the set of relational symbols appearing in the rules of ρ
Let P be a relational symbol of a positive literal appearing in the body of
some rule ρ in Π and let Q be the relational symbol of ρ’s head. Then the
(positive) edge P −→ Q is contained in E .
Let P be the relational symbol of a negative literal appearing in the body of
some rule ρ in Π and let Q be the relational symbol of ρ’s head. Then the
(negative) edge P

¬−→ Q is contained in E .

We call a program recursive, if its dependency graph has a cycle.

Note: the definition of recursiveness ignores edge labels; we will come back
to these labels at a later point
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Datalog: Basics

Example: Dependency Graph

Consider the Datalog program Π defined by the rules

DestRec(X) ← Flight( , ‘FFT’, X, , )
DestRec(Y) ← DestRec(X), Flight( , X, Y, , )
NotDestRec(X) ← City(X), ¬ DestRec(X)

Then the dependency graph of Π is defined as G := (V ,E ) , where

V := {DestRec,Flight,City,NotDestRec},
E := {Flight −→ DestRec,DestRec −→ DestRec,

City −→ NotDestRec,DestRec
¬−→ NotDestRec}.

This program is recursive (cycle: DestRec −→ DestRec).
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Datalog: Basics

Definition: Active Domain

Recall: the active domain of an instance I, adom(I), is defined as the set
of all constants appearing in I.

The active domain of a Datalog program Π w.r.t. input I, adom(Π, I), is
the set of all constants appearing in Π and I.
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Datalog: Basics

Safe Datalog

Let Π be a Datalog program and let IE be an instance of extensional
relational symbols (input) and IA be an instance of the intensional
relational symbol (output, i.e. set of answers).

Typically: given input IE we are interested in the output IA
A rule is called safe if every variable appears in a positive literal in its body

Lemma

Let Π be a Datalog program. If every rule of Π is safe and IE is finite, then the
output IA of Π is finite.
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Datalog: Basics

Example: Safe Datalog Program

DestRec(X) ← Flight( , ‘FFT’, X, , )
DestRec(Y) ← DestRec(X), Flight( , X, Y, , )

Example: Non-safe Datalog Program

Goal(X) ← Flight( , ‘FFT’, Y, , )

Example: Non-safe Datalog Program

Goal(X) ← ¬ Flight( , ‘FFT’, X, , )

Note

The result of non-safe Datalog programs may depend on the underlying
domain (we may evaluate them w.r.t. the active domain)
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Roadmap

Outlook: Datalog

In the following, we study different fragments of Datalog:

Name Informal Description
Datalog+ Positive Datalog, i.e. Datalog without

negated literals
Datalog¬ Datalog as defined before, i.e. literals in the

body may contain negated subgoals
Datalog¬¬ An extension of Datalog¬, where we also

allow head predicates to be negated
Stratified Datalog An important subclass of Datalog¬, obtained

from a syntactic restriction (will be defined later)
NR-Datalog¬ Non-recursive Datalog with negation

We study fundamental properties of these fragments, discuss different
semantics, evaluation techniques, and relations between these fragments and
relational algebra.
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Background Reading

Literature

S. Abiteboul, R. Hull, V. Vianu: Foundations of Databases.

Part D – Chapter 12: Datalog covers most of our study of the Datalog+

fragment

Part D – Chapter 15: Negation in Datalog covers semantics for Datalog¬

fragments

Note: the book is freely available for download at

http://www.inf.unibz.it/~nutt/FDBs0809/,

(username and password for downloading the files are provided at the bottom of
the page).
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Datalog+

Definition: Datalog+

We start with positive Datalog, called Datalog+, which is the subset of full
Datalog defined as follows

A positive rule is an implication of the form

H(x)← G1(x , y1), . . . ,Gn(x , yn),where

n ≥ 0,
H, G1, . . . , Gn are relational symbols,
x , y1, . . . , yn are vectors of variables, and
R(z) denotes an atomic formula over variables from z (i.e., a formula using
a subset of the variables in z).

A set of safe positive rules is called Datalog+ program
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Evaluation of Datalog+ Programs

Naive Evaluation Algorithm for Datalog+ Programs

Goal: compute the output IA of some Datalog+ program Π w.r.t. the input IE
(1) Begin: initialize the relations of the intensional relational symbols R with ∅,

i.e. I0
A(R) = ∅. Put j := 0.

(2) (2a) Put j := j + 1.
Let ρ be a rule from Π of the form H ← G , where H = R(a1, ..., ak) with
variables or constants ai (1 ≤ i ≤ k). Put

Iρ(R) := {(ν(a1), ..., ν(ak)) |
(IE ∪ I j−1

A ) |=ν G , ν is a variable assignment for G }

(2b) Let R be an intensional relational symbol and let ρR1 , ..., ρ
R
l be the rules

having predicate R in their head. Put

I jA(R) := ∪l
i=1Iρi (R)

(2) Repeat step (2) until I jA(R) = I j−1
A (R) for all intensional relational symbols R.
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Evaluation of Datalog+ Programs

Examples: Naive Evaluation Algorithm

Dest(‘FFT’, X) ← Flight( , ‘FFT’, X, , ) j IA (Dest)

0 ∅
1 {(FFT, BER), (FFT, DAL)}
2 {(FFT, BER), (FFT, DAL)}

DestRec(X) ← Flight( , ‘FFT’, X, , )
DestRec(Y) ← DestRec(X), Flight( , X, Y, , )

j IA (DestRec)

0 ∅
1 {BER, DAL}
2 {BER, DAL, LON}
3 {BER, DAL, LON, NY}
4 {BER, DAL, LON, NY}
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Evaluation of Datalog+ Programs

Proposition

Given a Datalog+ program Π, the naive evaluation algorithm always terminates.

Proof Sketch

Follows from the observation that the computation in steps (2a) and (2b) is
monotonic and the finiteness of the output (Datalog+ is safe).
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Datalog+ Semantics

Model-theoretic, Fixpoint, and Proof-theoretic Semantics

In general, there are two possible views on Datalog programs

Datalog rules are First-order Logic formulas (where the free variables are
all-quantified), which define the desired answer set

⇒ leads to a model-theoretic or proof-theoretic semantics

Datalog rules are operational rules that can be used to calculate the answer
set.

⇒ leads to a fixpoint semantics

We now formalize the above-mentioned semantics for Datalog+, study their
properties, and finally show that they coincide.
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Model-theoretic Semantics for Datalog+

Preliminaries

Let R be a database schema and I be an instance over R, i.e. I assigns a
finite relation to each relational symbol of R.

I can be understood as a set of (database) facts of the form

{R(a1, . . . , an) | R ∈ R, (a1, . . . , an) ∈ I(R)}
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Model-theoretic Semantics for Datalog+

Preliminaries (ctd)

Let ρ be a rule of a Datalog+ program Π over database schema R of the
form

ρ := H ← G1, . . . ,Gk

and let I be an instance over R.

I satisfies ρ, if for each assignment ν of the variables in ρ:

ν(G1), . . . ν(Gk) ∈ I =⇒ ν(H) ∈ I

I satisfies Π iff it satisfies every rule ρ from Π
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Model-theoretic Semantics for Datalog+

Example

Consider the schema R := {S,T} and the instance I defined as

I := {S(a),S(b),T(a)}

Further consider the Datalog+ program Π defined by the two rules

ρ1 : S(X) ← T(X),
ρ2 : T(X) ← S(X).

Then I satisfies ρ1, but it does not satisfy ρ2. Therefore, it does not satisfy
program Π.
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Model-theoretic Semantics for Datalog+

Preliminaries (ctd)

Let Π be a Datalog program, let R be a database schema that contains exactly
the relational symbols appearing in Π,1 and let edb(Π) (idb(Π)) denote the set
of extensional (intensional) relational symbols of Π.

The input for Π is an instance over edb(Π).

A model of Π is an instance over R, i.e. edb(Π) ∪ idb(Π), that satisfies Π.

1From now on, we call such a schema matching database schema
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Model-theoretic Semantics for Datalog+

Definition: Model-theoretic Semantics

The model-theoretic semantics of Π w.r.t. to input I, denoted as Π(I), is the
minimal model of Π containing the input I.

Remark

The definition is not Datalog+-specific. Concerning Datalog+ programs, though,
we will later show that the minimal model is unique.

Lemma

Let Π be a Datalog+ program. Whenever Π(I) exists, then it holds that
adom(Π(I)) ⊆ adom(Π, I). Thus, any model of Π contains only constants from
adom(Π, I).
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Model-theoretic Semantics for Datalog+

Constructing a Model for Datalog+ Programs

We can construct a model M(Π, I) of a Datalog+ program Π containing I as
follows.

For the extensional relations, choose I
For the intensional relations, choose adom(Π, I)× . . .× adom(Π, I),
depending on the arity of the respective input relation

Note: the so-constructed model is not minimal in the general case
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Model-theoretic Semantics for Datalog+

Theorem

Let Π be a Datalog+ program with input I. Further let X be the set of all
models of Π that contain I. Then Π(I) exists and Π(I) = ∩X .

Proof

It holds that M(Π, I) ∈ X , i.e. there is at least one model.

Now let H ← G1, . . . ,Gk be a rule ρ of Π and ν a variable assignment. Then it
holds that

ν(G1), . . . , ν(Gk) ∈ ∩X =⇒ ν(H) ∈ ∩X ,

i.e. ∩X satisfies ρ.

By definition, every model in X contains the input I. Therefore, ∩X is a model
of Π that contains I. By construction, it is unique and minimal.
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Fixpoint Semantics for Datalog+

Preliminaries

Let ρ be a rule and ν be a variable assignment over all variables appearing
in ρ. ν(ρ) is called instantiation or ground instance of ρ.

Let Π be a Datalog+ program and I be an instance over R.

The immediate consequences of Π and I are the facts A defined by the
following two rules.

A ∈ I(R) for some EDB relation R
There is an instantiation A← A1, . . . ,An of a rule from Π such that Ai ∈ I
for 1 ≤ i ≤ n.
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Fixpoint Semantics for Datalog+

Preliminaries (ctd)

The immediate consequence operator T of a Datalog+ program Π, TΠ, is a
mapping over the instances of R defined as follows:

TΠ(I) := {A | A is an immediate consequence of Π w.r.t. I}

T is called monotonic, if for all instances I,J it holds that

I ⊆ J =⇒ T (I) ⊆ T (J ).

An instance I is called fixpoint of T , if T (I) = I.

TΠ is monotonic.

An instance I is a model of Π if and only if TΠ(I) ⊆ I. (∗)
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Fixpoint Semantics for Datalog+

Theorem

Let Π be a Datalog+ program with input I. TΠ has a minimal fixpoint that
contains I. This minimal fixpoint is exactly the minimal model of Π(I).

Proof

Π(I) is fixpoint of TΠ, because

TΠ(Π(I)) ⊆ Π(I), since Π(I) is a model of Π.

TΠ(Π(I)) ⊆ Π(I) implies that TΠ(TΠ(Π(I))) ⊆ TΠ(Π(I)).

Therefore, it follows from (∗) that TΠ(Π(I)) is a model of Π.

Since Π(I) is a minimal model, it follows that Π(I) ⊆ TΠ(Π(I)).

Recall that every fixpoint is also a model. Therefore TΠ must have a minimal
fixpoint, which corresponds exactly to the minimal model Π(I).
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Fixpoint Semantics for Datalog+

Computation of the Minimal Fixpoint

Let Π be a Datalog+ program with input I. Then it holds that

I ⊆ TΠ(I) ⊆ T 2
Π(I) ⊆ T 3

Π(I) ⊆ . . . ⊆M(Π, I).

Let N be the number of facts in M(Π, I). Then

T i
Π(I) = TN

Π (I), i ≥ N,

and, in particular, TΠ(TN
Π (I)) = TN

Π (I).

We denote the fixpoint TN
Π (I) as T∞Π (I).
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Fixpoint Semantics for Datalog+

Theorem

Let Π be a Datalog+ program. Then T∞Π (I) = Π(I), i.e. T∞Π (I) is the minimal
fixpoint containing I.

Proof

Let J be an arbitrary fixpoint of TΠ that contains I. Then it holds that

J ⊇ T 0
Π(I) = I,

J ⊇ T i
Π(I), i ≥ 0,

J ⊇ T∞Π (I).

Remark

The naive Datalog+ evaluation algorithm discussed earlier implements the
iterations of the T -operator for a Datalog+ program Π with input I.

Prof. Dr. G. Lausen, M. Meier, M. Schmidt 28. Juni 2010 Seite 36



Datalog and Friends SS 2010 1. Deductive Databases: Datalog 1.2. Datalog+: Evaluation and Semantics

Fixpoint Semantics for Datalog+

Theorem

Let Π be a Datalog+ program. Then T∞Π (I) = Π(I), i.e. T∞Π (I) is the minimal
fixpoint containing I.

Proof

Let J be an arbitrary fixpoint of TΠ that contains I. Then it holds that

J ⊇ T 0
Π(I) = I,

J ⊇ T i
Π(I), i ≥ 0,

J ⊇ T∞Π (I).

Remark

The naive Datalog+ evaluation algorithm discussed earlier implements the
iterations of the T -operator for a Datalog+ program Π with input I.
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Proof-theoretic Semantics for Datalog+

Definition Proof Tree

Let A be a fact. A proof tree of A w.r.t. a Datalog program Π and input I is a
labeled tree satisfying the following properties:

(1) Every node of the tree is labeled with a fact

(2) Every leaf node of the tree is labeled with a fact from I
(3) The root is labeled with fact A

(4) For every inner node of the tree there is an instantiation of a rule from Π of
the form

A1 ← A2, . . . ,An

such that

the node is labeled with A1,
the children of the nodes are labeled with A2, . . . , An.
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Proof-theoretic Semantics for Datalog+

Theorem

Let Π be a Datalog program with input I and let A be a fact. It holds that
A ∈ Π(I) if and only if there exists a proof tree for A w.r.t. Π and I.

Example

Π : p(X ,Y )← e(X ,Z), e(Z ,Y )
p(X ,Y )← p(X ,Z), p(Z ,Y )

e :=

a b
b c
c d
d a

p(a,a)

p(a,c)

e(a,b) e(b,c) e(c,d) e(d,a)

p(c,a)

p(a,a)

p(a,c)

e(a,b) e(b,c) e(c,d) e(d,a)

p(c,a)
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Summary: Semantics for Datalog+

Central Results

We have studied three semantics for Datalog+

The model-theoretic semantics

The answer of a Datalog program is its minimal model
This minimal model is unique for Datalog+

The fixpoint semantics

Derives new facts until a fixpoint is reached
This fixpoint always exists for Datalog+ programs and is unique

The proof-theoretic semantics

Defines the output as the set of facts that can be proven

Key observations

For Datalog+, all three semantics coincide
For Datalog+, all three semantics coincide to the naive evaluation algorithm
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Datalog+: Boundedness and Recursion

Definition: Boundedness

A Datalog+ program Π is bounded if there is a constant d such that for every
input I it holds that

T d
Π (I) = T d+1

Π (I).

Theorem

In the general case it is undecidable if a Datalog+ program is bounded.
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Datalog+: Boundedness and Recursion

Example: Boundedness

The Datalog+ program

Buys(X ,Y )← Trendy(X ),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

is bounded, but the program

Buys(X ,Y )← Knows(X ,Z ),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

is not bounded.

Proposition

Let Π be a Datalog+ program. If Π is bounded, then there exists a finite
equivalent Datalog program that is not recursive.
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Datalog+: Boundedness and Recursion

Example

Buys(X ,Y )← Trendy(X ),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

≡
Buys(X ,Y )← Likes(X ,Y )
Buys(X ,Y )← Trendy(X ), Likes(Z ,Y )

Example

Buys(X ,Y )← Knows(X ,Z),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

≡

Buys(X ,Y )← Likes(X ,Y )
Buys(X ,Y )← Knows(X ,Z), Likes(Z ,Y )
Buys(X ,Y )← Knows(X ,Z),Knows(Z ,Z1), Likes(Z1,Y )
Buys(X ,Y )← Knows(X ,Z),Knows(Z ,Z1),Knows(Z1,Z2), Likes(Z2,Y )
...
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Datalog+: Boundedness and Recursion

Example

Buys(X ,Y )← Trendy(X ),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

≡
Buys(X ,Y )← Likes(X ,Y )
Buys(X ,Y )← Trendy(X ), Likes(Z ,Y )

Example

Buys(X ,Y )← Knows(X ,Z),Buys(Z ,Y )
Buys(X ,Y )← Likes(X ,Y )

≡

Buys(X ,Y )← Likes(X ,Y )
Buys(X ,Y )← Knows(X ,Z), Likes(Z ,Y )
Buys(X ,Y )← Knows(X ,Z),Knows(Z ,Z1), Likes(Z1,Y )
Buys(X ,Y )← Knows(X ,Z),Knows(Z ,Z1),Knows(Z1,Z2), Likes(Z2,Y )
...
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Containment of Datalog+ Programs

Definition: Containment of Datalog Programs

Let Π, Π′ be two Datalog programs containing the same extensional relations
and a common intensional relation T .

Π is contained in Π′ w.r.t. T , Π vT Π′, if for every input I it holds that

Π(I)(T ) ⊆ Π′(I)(T ).

Π and Π′ are equivalent w.r.t. T , Π ≡T Π′, iff Π vT Π′ and Π′ vT Π.
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Containment of Datalog+ Programs: Decidability

Theorem

The containment problem for two Datalog+ programs Π, Π′ (i.e., the question
whether Π vT Π′ for some relation T holds or not) is undecidable in the general
case.

Proof Idea

By a reduction of the containment problem for context-free grammars.

Theorem

The containment relationship Π vT Π′ of two Datalog+ programs Π, Π′

w.r.t. T (and hence, also the Π ≡T Π′ relationship) is decidable if

Π,Π′ can be expressed as finite sets of conjunctive queries (e.g.,
non-recursive Datalog+ programs consisting of a single rule), or

Π can be expressed as a finite set of conjunctive queries and Π′ is a
Datalog program.

Prof. Dr. G. Lausen, M. Meier, M. Schmidt 28. Juni 2010 Seite 46



Datalog and Friends SS 2010 1. Deductive Databases: Datalog 1.4. Datalog+: Containment

Containment of Datalog+ Programs: Decidability

Theorem

The containment problem for two Datalog+ programs Π, Π′ (i.e., the question
whether Π vT Π′ for some relation T holds or not) is undecidable in the general
case.

Proof Idea

By a reduction of the containment problem for context-free grammars.

Theorem

The containment relationship Π vT Π′ of two Datalog+ programs Π, Π′

w.r.t. T (and hence, also the Π ≡T Π′ relationship) is decidable if

Π,Π′ can be expressed as finite sets of conjunctive queries (e.g.,
non-recursive Datalog+ programs consisting of a single rule), or

Π can be expressed as a finite set of conjunctive queries and Π′ is a
Datalog program.
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Datalog+ vs. Conjunctive Queries

Lemma

For every Datalog+ program Π there exists an equivalent (not necessarily finite)
set of conjunctive queries.

Proof Sketch

First apply the algorithm Expand (see next slide) to program Π. Let T be an
IDB relation. Further let S(T ) be the set of all conjunctive queries in S that
define T and contain only EDB relations in their body.

Then for every input I it holds that Π(I)(T ) = S(T )(I).
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Datalog+ vs. Conjunctive Queries

Transformation of a Datalog+ Program Π into a set of CQs

Let T be a relevant IDB relation. Initialize S with the rules from Π defining T ;
each of these rules is denoted as candidate conjunctive query. The set of
conjunctive queries that is equivalent to Π results from the execution of
algorithm Expand (which expands the set S) defined as follows.

Algorithm Expand:

repeat forever
for each previously unconsidered potential conjunctive query Q in S do

for each IDB subgoal R(t1, . . . , tk ) in the body of Q do
for each rule ρ for R do begin

rename variables of ρ so there are none in common with Q;

unify the head H of ρ with R(t1, . . . , tk ) to get MGU τ;
/* MGU τ is the most general substitution such that */

/* τ(H) and τ(R(t1, . . . , tk )) become syntactically equivalent. */

add to S the potential conjunctive query formed from τ(Q) by

replacing τ(R(t1, . . . , tk )) by τ applied to the body of ρ
end

end Expand
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Containment Testing

Containment of Conjunctive Queries in Datalog+ Programs

First Idea:
Expand the Datalog+ program into a set of conjunctive queries S and test
containment after each expansion step of S.

⇒ drawback: using this scheme we cannot determine in finite time if the
containment relationship does not hold.

Second Idea:
For each conjunctive query Q compute the canonical instance IQ and
consider the minimal model Π(IQ) of the Datalog+ program Π. If it holds

that τ(R(~U)) ∈ Π(IQ), where τ is the canonical substitution and R(~U) is
the head of Q, then Q is contained in Π.
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Containment Testing

Lemma

Let Q be a conjunctive query with head R(~U), canonical instance IQ , and
associated canonical substitution τ . It holds that Q vR Π if and only if
τ(R(~U)) ∈ Π(IQ).

Proof
If τ(R(~U)) 6∈ Π(IQ ), then Q 6vR Π. Assume that τ(R(~U)) ∈ Π(IQ ).

Let T be an associated proof tree.

Let I be an instance and φ be a substitution of the variables in Q that satisfies Q w.r.t. I; the

answer is φ(R(~U)).

Replace every constant a in T by φ(τ−1(a)) and denote the resulting tree as T ′. It remains to show
that T ′ is a proof tree for Π w.r.t. I.

For every inner node N in T there exists a rule ρ and an instantiation ψ of ρ. Then consider the
instantiation of ρ w.r.t. the node N and T ′ of the form φ(τ−1(ψ(ρ))).

If N is a leaf with label τ(Gi ) in T , then we obtain the label φ(τ−1(τ(Gi ))) for N in T ′, i.e. φ(Gi ).
It holds that φ(Gi ) ∈ I, so we can conclude that T ′ is a proof tree.

The root of T carries the label τ(R(~U)) and therefore the root of T ′ carries the label

φ(τ−1(τ(R(~U)))), i.e. φ(R(~U)).

Consequently, every answer of Q over I has a proof tree w.r.t. Π.
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Datalog Program and Instance

Π : p(X ,Y )← e(X ,Z ), e(Z ,Y )
p(X ,Y )← p(X ,Z ), p(Z ,Y )

Q : p(X ,Y )← e(X ,U), e(U,V ), e(V ,W ), e(W ,Y )

Example: Containment Testing
p(ax,ay)

p(ax,av)

e(ax,au) e(au,av) e(av,aw) e(aw,ay)

p(av,ay)T

p(ax,ay)

p(ax,av)

e(ax,au) e(au,av) e(av,aw) e(aw,ay)

p(av,ay)T

e
ax au
au av
av aw
aw ay

p(a,a)

p(a,c)

e(a,b) e(b,c) e(c,d) e(d,a)

p(c,a)T‘

p(a,a)

p(a,c)

e(a,b) e(b,c) e(c,d) e(d,a)

p(c,a)T‘

e
a b
b c
c d
d a
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Datalog¬: Inflationary Semantics

Datalog¬: Inflationary Semantics

We now consider Datalog programs with negation in their bodies

To evaluate such programs, we take the underlying active domain as a basis

To derive new facts, we now fire all rules of a program simultaneously and,
in each step, derive facts for each rule w.r.t. all possible variable
assignments

A negative fact of an IDB relation of the form ¬P in a rule is considered to
be satisfied whenever the fact P has not been derived in previous iterations

The rules are evaluated iteratively, until a fixpoint is reached. A fact is
considered to be derived, if it has been derived in some iteration

The output of the program is defined as the set of all facts that are derived
within the iteration process
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Datalog¬: Inflationary Semantics

Example: Datalog¬

Let the relation G represent the edge relation of a directed graph. The following
Datalog¬ program defines a relation Closer such that Closer(X,Y,X’,Y’) holds
iff the shortest path from X to Y in G is shorter than the shortest path from X ′

to Y ′. We thereby assume the distance of unconnected nodes to be ∞.

T (X ,Y )← G (X ,Y )
T (X ,Y )← T (X ,Z ),G (Z ,Y )
Closer(X ,Y ,X ′,Y ′)← T (X ,Y ),¬T (X ′,Y ′)
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Datalog¬: Inflationary Semantics

Example: Datalog¬

Complement of the transitive closure of G : is the following program correct?

T (X ,Y )← G (X ,Y )
T (X ,Y )← T (X ,Z ),G (Z ,Y )
Compl(X ,Y )← ¬T (X ,Y )

Prof. Dr. G. Lausen, M. Meier, M. Schmidt 28. Juni 2010 Seite 55



Datalog and Friends SS 2010 1. Deductive Databases: Datalog 1.5. Datalog with Negation

Datalog¬: Inflationary Semantics

Definition: Immediate Consequence Operator for Datalog¬

Let Π be a Datalog¬ program and let K be an instance over the relational
schema defined by Π.

A fact A is called immediate consequence of Π and K, if

A ∈ K(R) for some EDB relation R, or

A← L1, . . . , Lm is an instantiation (w.r.t. the active domain) of a rule from
Π such that for every positive Li it holds that Li ∈ K and for every negative
Li := ¬Ai it holds that Ai 6∈ K.

The immediate consequence operator Γ of Π, ΓΠ, is then defined as follows.

ΓΠ(K) := K ∪ {A | A is an immediate consequence of Π w.r.t. K}
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Datalog¬: Inflationary Semantics

Inflationary Fixpoint

Let I be an input for program Π. By definition, it holds that

ΓΠ(I) ⊆ Γ2
Π(I) ⊆ Γ3

Π(I) . . .

This sequence has a fixpoint Γ∞Π (I) with output Π(I), which is reached after a
finite number of iterations.

Remark: In contrast to operator T∞Π (I) for Datalog+ we can observe that
Γ∞Π (I) is not necessarily minimal and, in particular, not a minimal model (see
the example on the next slide).
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Datalog¬: Inflationary Semantics

Example: Fixpoint and Minimal Models of Datalog¬

Consider the program Π:

R(0)← Q(0),¬R(1)
R(1)← Q(0),¬R(0)

Let I := {Q(0)}. Then Π(I) = {Q(0),R(0),R(1)}. Π(I) is a model, but not a
minimal one. The two models shown below are minimal (each):

{Q(0),R(0)} {Q(0),R(1)}
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Datalog¬: Inflationary Semantics

Example

What does the following program compute when given a non-empty graph edge
relation G as input?

T (X ,Y )← G (X ,Y )
T (X ,Y )← T (X ,Z ),G (Z ,Y )
oldT (X ,Y )← T (X ,Y )
oldTexceptFinal(X ,Y )← T (X ,Y ),T (X ′,Z ′),T (Z ′,Y ′),¬T (X ′,Y ′)
CT (X ,Y )← ¬T (X ,Y ), oldT (X ′,Y ′),¬oldTexceptFinal(X ′,Y ′)
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Datalog¬¬: Non-inflationary Semantics

Datalog¬¬

We now consider Datalog programs with negation in both body and head

Idea: negation in the head of rules removes facts that have been derived in
previous steps

This variant of Datalog is called Datalog¬¬
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Datalog¬¬: Non-inflationary Semantics

Immediate Consequence Operator for Datalog¬¬

Let Π be a Datalog¬¬ program and K an instance over the relational schema of
Π

A literal L is called immediate consequence of Π and K, if

L is positive and L ∈ K(R) for some EDB relation R, or

L← L1, . . . , Lm is an instantiation (w.r.t. the active domain) of a rule in Π
such that for every positive Li it holds that Li ∈ K and for every negative
Li := ¬Ai it holds that Ai 6∈ K.

The immediate consequence operator Γ′ for Π, Γ′Π, is defined as follows.

Γ′Π(K) := K ∪ {A | L := A and L is an immediate consequence of Π w.r.t.. K}
\ {A | L := ¬A and L is an immediate consequence of Π w.r.t. K,

but A is not an immediate consequence}
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Datalog¬¬: Non-inflationary Semantics

Termination

Let I be an input for Datalog¬¬ program Π. The sequence

Γ′Π(I), Γ′2Π (I), Γ′3Π (I) . . .

does not necessarily have a fixpoint, i.e. the evaluation of Π is not guaranteed to
terminate.

Example: Non-terminating Sequence

The following Datalog¬¬ program does not terminate for input T (0).

T (0)← T (1)
¬T (1)← T (1)
T (1)← T (0)
¬T (0)← T (0)
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Datalog¬: Stratified Semantics

We extend the applicability of the T -operator to Datalog¬ (not Datalog¬¬) and
denote the resulting operator as T #.

Operator T#

Let Π be a Datalog¬ program and I be an instance of R. The immediate
consequences of Π and I are facts A defined as follows:

A ∈ I(R) for some EDB relation R ∈ R, or

there is an instantiation A← L1, . . . , Ln of a rule from Π such that for
every positive Li it holds that Li ∈ I and for every negative Li = ¬Ai it
holds that Ai 6∈ I, 1 ≤ i ≤ n.

The immediate consequence operator T # of Π, T #
Π , is a mapping over the

instances of R defined as follows.

T #
Π (I) = {A | A is an immediate consequence of Π w.r.t. I}
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Datalog¬: Stratified Semantics

Discussion

Consider a program Π of the form

p ← ¬p

We can observe that the T #
Π operator has no fixpoint, because the iterative

fixpoint computation {T #,i
Π (∅)}i>0 does not terminate.

The T # operator does not necessarily have a unique fixpoint, e.g. for Π of
the form

p ← ¬q
q ← ¬p

the two minimal fixpoints are {p} and {q}, respectively. Both of them do
not result from the terminating iterative computation.
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Datalog¬: Stratified Semantics

Discussion (ctd)

Consider the program Π:
p ← ¬q
q ← ¬p
p ← ¬p, q

The iterative fixpoint computation does not terminate, although {p} is the
minimal fixpoint.

Consider Π:
p ← true
q ← ¬p
q ← q

The iterative fixpoint computation converges to {p, q}, but {p} is the
minimal fixpoint here.

⇒ iteration of the T # operator is not a satisfactory solution
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Datalog¬: Stratified Semantics

Remark

If we extend each program w.r.t. to an n-ary IDB relation R by a rule of the form

R(X1, . . . ,Xn)← R(X1, . . . ,Xn),

then the T # operator evaluates the program according to the inflationary
semantics.

Rules of the form p ← p are equivalent to p ∨ ¬p and thus tautologies.
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Datalog¬: Stratified Semantics

Definition: Stratification

A Datalog program is called stratified if its dependency graph does not contain
a cycle going through a negative (i.e., ¬-labeled) edge.

Definition: Stratification of a Program

Let R be a relational symbol contained in a rule of some stratified
Datalog¬ program Π

Let S(R) be the maximum over the number of ¬-labeled edges over all
paths leading to R. S(R) is called stratum of R.

Let n be the maximum within the set
{S(R) | R is a relational symbol in Π}

The partitioning {Π1,Π2, . . . ,Πn} of the rules in Π such that each Πi

contains exactly those rules of Π whose head relational symbol has stratum
i − 1 is called stratification of Π.
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Datalog¬: Stratified Semantics

Evaluation of Stratified Programs

The (stratified) semantics of a stratified Datalog¬ program is defined by a
stratified composition of minimal models, where each minimal model can
be compute by iteration of the T # operator.

When used in the context of stratified semantics, we therefore shall refer to
the T # operator as T operator.
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Datalog¬: Stratified Semantics

Stratified Semantics

Let σ := Π1,Π2, . . . ,Πn be a stratification of some Datalog¬ program Π and let
the input E be an instance over the EDB relations of Π. Further let

I0 := E ,
I i := I i−1 ∪ Πi (I i−1), 0 < i ≤ n.

The stratified semantics Πstrat(E) of Π w.r.t. input E is defined as In.

Πi (I i−1) is the minimal model of program Πi w.r.t. input I i−1.
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Datalog¬: Stratified Semantics

Theorem

Πstrat(E) is a minimal model of Π w.r.t. input E . This model is also a minimal
fixpoint w.r.t. TΠ.

Hence, the stratified semantics chooses a minimal model out of the set of all
models. This model is uniquely determined by the syntax of the program, i.e. its
stratification. Informally speaking, the programmer’s intuition defines the
minimal model.

⇒ due to this reason, the stratified semantics is generally accepted as a
semantics for stratified Datalog¬ programs

Prof. Dr. G. Lausen, M. Meier, M. Schmidt 28. Juni 2010 Seite 70



Datalog and Friends SS 2010 1. Deductive Databases: Datalog 1.6. Stratified Datalog¬

Datalog¬: Stratified Semantics

Example

Consider the program

greenPath(X ,Y )← green(X ,Y )
greenPath(X ,Y )← greenPath(X ,Z ), greenPath(Z ,Y )
bingo(X ,Y )← red(X ,Y ),¬greenPath(X ,Y )

and input green
1 2

red
1 2
2 3

The following two models are minimal.

greenPath = {(1, 2)}, bingo = {(2, 3)},
greenPath = {(1, 2), (2, 3), (1, 3)}, bingo = ∅.

The first one is obtained by application of the stratified semantics.

The inflationary fixpoint is defined by greenPath = {(1, 2)}, bingo =
{(1, 2), (2, 3)}; it is a model, but not a minimal one.
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Datalog¬: Stratified Semantics

Example

Consider the following two propositional programs.

Π1 : p ← ¬q
Π2 : q ← ¬p

It holds that Π1 ≡ Π2 ≡ (p ∨ q).

First observe that M1 = {p} and M2 = {q} both are minimal models of p ∨ q,
and thus minimal models of both Π1 and Π2.

Π1 and Π2 have different stratified semantics, though:

M1 := {p} is the stratified semantics of Π1

M2 := {q} is the stratified semantics of Π2
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NR-Datalog¬: Non-recursive Datalog with Negation

Non-recursive Datalog with Negation

An non-recursive Datalog¬ program (NR-Datalog¬, for short), is a
Datalog¬ program whose dependency graph contains no cycle

NR-Datalog¬ is a subset of stratified Datalog: the dependency graph has
no cycle and thus no cycle going through a negative edge

We underlie the stratified semantics for evaluating NR-Datalog¬

Outlook

In this subsection we show that NR-Datalog¬ and relational algebra have
exactly the same expressive power, i.e. for every relational algebra query, there is
an equivalent NR-Datalog¬ program and vice versa.
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NR-Datalog¬: Non-recursive Datalog with Negation

Non-recursive Datalog with Negation

An non-recursive Datalog¬ program (NR-Datalog¬, for short), is a
Datalog¬ program whose dependency graph contains no cycle

NR-Datalog¬ is a subset of stratified Datalog: the dependency graph has
no cycle and thus no cycle going through a negative edge

We underlie the stratified semantics for evaluating NR-Datalog¬

Outlook

In this subsection we show that NR-Datalog¬ and relational algebra have
exactly the same expressive power, i.e. for every relational algebra query, there is
an equivalent NR-Datalog¬ program and vice versa.
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Relational Algebra is Contained in NR-Datalog¬

Lemma (∗1)

For every relational algebra query there is an equivalent NR-Datalog¬ program.

Proof Sketch

Let R := {R1, . . . ,Rn} be a relational schema

By ar(Ri ) we denote the arity of relational symbol Ri (1 ≤ i ≤ n).

Given a relational symbol R ∈ R, we denote the attributes associated to R
as att(R) := [AR

1 , . . . ,A
R
ar(R)]

We introduce a function pr(Q) that, for each relational algebra query Q,
returns a relational symbol s.t. (i) for all Q: pr(Q) 6∈ R and (ii) for all
Q1 6= Q2 it holds that pr(Q1) 6= pr(Q2)

We consider algebra expressions built using selection, projection, join, rename,
union, difference and inductively define a function r2d that transforms them
into NR-Datalog¬ programs (i.e., sets of rules)
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Relational Algebra is Contained in NR-Datalog¬

Proof Sketch (ctd)

If Q := Ri is a relational symbol, define

r2d(Q) := {pr(Q)(AR
1 , . . . ,A

R
ar(n))← R(AR

1 , . . . ,A
R
ar(n))},

where we understand the symbols AR
i as variables.

If Q := πA1,...,Am(Q1) is a projection expression, define

r2d(Q) := r2d(Q1) ∪ {pr(Q)(A1, . . . ,Am)← head(r2d(Q1))}

If Q := Q1 on Q2, let X1 (X2) denote the vector of variables appearing in
head(r2d(Q1)) (head(r2d(Q2))) and define

r2d(Q) := r2d(Q1) ∪ r2d(Q2) ∪
{pr(Q)(X1,X2)← head(r2d(Q1)), head(r2d(Q2))}
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Relational Algebra is Contained in NR-Datalog¬

Proof Sketch (ctd)

If Q := ρA1 7→A2 (Q1), let ρA1 7→A2 (X1) denote the vector of variables
appearing in head(r2d(Q1)), where each occurrence of A1 has been
replaced by A2, and let (ii) ρA1 7→A2 (head(r2d(Q1))) denote the formula
obtained from head(r2d(Q1)) obtained by replacing every occurrence of A1

by A2, and define

r2d(Q) := r2d(Q1) ∪
{pr(Q)(ρA1 7→A2 (X1))← ρA1 7→A2 (head(r2d(Q1)))}

If Q := Q1 ∪ Q2, let X1 (X2) denote the vector of variables appearing in
head(r2d(Q1)) (head(r2d(Q2))) and define

r2d(Q) := r2d(Q1) ∪ r2d(Q2) ∪
{pr(Q)(X1)← head(r2d(Q1)),

pr(Q)(X2)← head(r2d(Q2))}
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Relational Algebra is Contained in NR-Datalog¬

Proof Sketch (ctd)

If Q := Q1 − Q2, let X1 denote the vector of variables appearing in
head(r2d(Q1)) and define

r2d(Q) := r2d(Q1) ∪ r2d(Q2) ∪
{pr(Q)(X1)← pr(Q1)(X1),¬ pr(Q2)(X1)}

Closing remarks:

By construction, the program r2d(Q) is a NR-Datalog¬ program

It can be easily shown by induction that, given Q as input, the resulting
Datalog program r2d(Q) is equivalent to Q (i.e., the answer of Q and the
result stored in pr(Q) are identical)

This concludes the proof of Lemma (∗1)
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Relational Algebra is Contained in NR-Datalog¬

Example: Translation of Relational Algebra into NR-Datalog¬

Consider the schema R := {R[A,B,C ],S [C ,D,E ]}. We translate the relational
algebra query Q := πA(R on S):

For subquery Q := R we obtain the rule

ansR(A,B,C )← R(A,B,C )

For subquery Q := S we obtain the rule

ansS(C ,D,E )← S(C ,D,E )

For subquery Q := R on S , we obtain the rule

ansRonS(A,B,C ,C ,D,E )← ansR(A,B,C ), ansS(C ,D,E )

For query Q we thus obtain: ansQ(A)← ansRonS(A,B,C ,C ,D,E )
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NR-Datalog¬ is Contained in Relational Algebra

Lemma (∗2)

For every NR-Datalog¬ query there is an equivalent relational algebra query.

To prove this lemma, we will now show...

... how to translate the NR-Datalog¬ program into the range-restricted
relational calculus. The lemma then follows from Codd’s theorem (stating that
relational algebra and the range-restricted relational calculus have the same
expressive power).
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Translation of NR-Datalog¬ into the Relational Calculus

Example: Translation NR-Datalog¬ into Relational Calculus

Consider the relations

Prof [Name,Room,Phone]

Lecture[Course,Name]

Examiner [Topic,Name]

The following NR-Datalog¬ program and the associated translation extract all
professors that do neither teach nor examine:

Active(X) ← Lecture( ,X)
Active(X) ← Examiner( ,X)
ans(X) ← ¬ Active(X), Prof(X, , )

{<X>| ∃Y1,Y2 Prof(X ,Y1,Y2)
¬[ ∃Y1Lecture(Y1,X ) ∨
∃Y1Examiner(Y1,X )]}
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Translation of NR-Datalog¬ into the Relational Calculus

Lemma (∗3)

For each NR-Datalog¬ program there is an equivalent relational calculus query.

Proof Sketch

Let Π be a NR-Datalog¬ program with intensional relations S1, . . . , Sm,
and rules ρi1, . . . , ρiki for each i ≤ m

We inductively define

a formula ϕij for each rule qij , and
a formula ϕi for each relation Si

Note: in the translation process described subsequently, we may obtain a
(syntactically) extended version of Datalog rules containing equality atoms
of the form X = c or X = Y in rule bodies
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Translation of NR-Datalog¬ into the Relational Calculus

Proof Sketch (ctd)

Let ρ := ρij be a rule of the form Si (U1, . . . ,Ul)← L1, . . . , Lp, where the
Lk are (possibly negated) literals (for 1 ≤ k ≤ p)

In a first step, transform ρ into a safe rule ρ′:

The head is translated into Si (X1, . . . ,Xl)
For each r ≤ l we modify the rule as follows

If Ur := c is a literal, add the literal Xr = c to the body of the rule
If Ur := x is a variable, replace x by Xr in the body of the rule
If Ur := Us for s 6= r , add a literal Xr = Xs to the body of the rule

Example: Rule Transformation

The rule ρ : S2(X2, 5,X2,X3)← R1(Y1,X2,X3),R2(Y1,X2,Y2) is translated into
ρ′ : S2(X1,X2,X3,X4)← R1(Y1,X1,X4),R2(Y1,X1,Y2),X2 = 5,X1 = X3
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Translation of NR-Datalog¬ into the Relational Calculus

Proof Sketch (ctd)

The formula ϕij(x1, . . . , xl) is now obtained from ρ′ as follows.

All variables appearing only in the body of ρ′ are existentially quantified

All literals are interconnected through conjunction

Atoms Sr (v) are replaced by ϕr (x/v)

Example: Translation of a Rule

Let R1 be extensional and R2 be intensional. Then the rule
ρ′ : S2(X1,X2,X3,X4)← R1(Y1,X1,X4),R2(Y1,X1,Y2),X2 = 5,X1 = X3 is
translated into

ϕij(X1, . . . ,X4) :=∃Y1,Y2 R1(Y1,X1,X4) ∧
ϕ2(Y1,X1,Y2) ∧ X2 = 5 ∧ X1 = X3
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Translation of NR-Datalog¬ into the Relational Calculus

Proof Sketch (ctd)

Having a translation for rules, we’re almost done and define

ϕi := ϕi1 ∨ . . . ∨ ϕiki

The relational calculus query {<X1, . . . ,Xl>| ϕm} is then equivalent to the
program Π

To complete the proof if Lemma (∗3) it remains to be shown that ϕm is
domain-independent

To this end, we show in the following that ϕm is range-restricted, which
implies domain-independence
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Translation of NR-Datalog¬ into the Relational Calculus

Lemma (∗4)

(a) For every NR-Datalog¬ program Π there is a range-restricted formula ϕ
such that for all matching databases D it holds that Π(D) = q(D) with
q := {<X> | ϕ}.

(b) For every range-restricted formula ϕ the query {<X> | ϕ} is
range-restricted.

Note: This lemma, in combination with Codd’s Theorem, implies Lemma (∗2)

Proof Sketch

Proof Idea:

1 We show that the formula constructed in the proof of Lemma (∗3) (i.e., the
translation from NR-Datalog¬ to the relational calculus) is range-restricted

2 By induction on the structure of ϕ
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Translation of NR-Datalog¬ into the Relational Calculus

Proof of Part (a)

Recall:

By rr(ϕ) we denote the range-restricted variables of relational calculus
formula ϕ (i.e., those variables that can take only values appearing in the
database)
By SRNF(ϕ) we denote the safe range normal form of ϕ
By free(ϕ) we denote the free variables of ϕ

Let Π be a NR-Datalog¬ program and let Si , ρij , ρ
′
ij , ϕi be defined as in

the proof of the previous translation

We prove by induction on i that for all i ≤ m it holds that
rr(SRNF(ϕi )) = free(ϕi ), which shows that ϕi is range-restricted
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Translation of NR-Datalog¬ into the Relational Calculus

Proof of Part (a) (ctd)

Basic case: i = 1

Every variable Xi appears in positive form in each rule ρij

Recalling that every ϕ1j is of the form ∃Y
∧

p Lp, we conclude that a
variable is positive if it appears in at least one positive literal (or is
connected with such a variable through equality atoms)

⇒ The free variables of ϕ1j are contained in each set rr(ϕ1j)

⇒ rr(SRNF(ϕ1j)) = free(ϕ1j)

⇒ rr(SRNF(ϕ1)) = free(ϕ1), which completes the basic case
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Translation of NR-Datalog¬ into the Relational Calculus

Proof of Part (a) (ctd)

Induction step: i > 1

Now it may happen that X is positive in ρij , because it appears in an
intensional atom Sr (V )

Such an atom in ϕij corresponds to a formula ϕr

By induction we have rr(SRNF(ϕr )) = free(ϕr )

It holds that every variable Xi appears in a positive literal or is connected
with such a variable through equality atoms, so it follows (analogously to
case i = 1) that the free variables of ϕij are contained in each set rr(ϕij)

⇒ rr(SRNF(ϕij)) = free(ϕij)

⇒ rr(SRNF(ϕi )) = free(ϕi ), which completes the induction step

From the induction hypothesis it follows by definition that ϕm is
range-restricted.
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Translation of NR-Datalog¬ into the Relational Calculus

Proof of Part (b)

To show that for each range-restricted formula ϕ, the query {<U> | ϕ} is
range-restricted we start with a range-restricted formula ϕ(X ) in SRNF with
rr(ϕ) 6= ⊥. We show by induction on the structure of ϕ that

for each matching database D,

each set d s.t. adom(ϕ,D) ⊆ d ⊆ dom, and

each variable assignment β : free(ϕ) 7→ d

it holds that

1 if Xi ∈ rr(ϕ) and D |=d ϕ[β], then β(x1) ∈ adom(ϕ,D), and

2 D |=d ϕ[β]⇐⇒ D |=adom(ϕ,D)∪β(free(ϕ)) ϕ[β].

Basic case: the claims are easily verified for atomic formulas of the form R(U),
X = c , X = Y (the last one follows from rr(ϕ) = ∅).
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Proof of Part (b) (ctd)

Induction step: we first show that claim 1

if Xi ∈ rr(ϕ) and D |=d ϕ[β], then β(x1) ∈ adom(ϕ,D)

holds for composed formulas:

ϕ := ¬(ϕ1) follows trivially by induction.

ϕ := ϕ1 ∨ ϕ2: follows by induction, because rr(ϕ1) = rr(ϕ2) = rr(ϕ)

ϕ := ϕ1 ∧ ϕ2:
If ϕ2 is of the form X = Y and rr(ϕ) ∩ {X ,Y } 6= ∅

If D |=d ϕ[β], then β(X ) = β(Y )
Thus, claim 1 follows by induction

Otherwise:

Let Xi ∈ rr(ϕ)
⇒ X1 ∈ rr(ϕ1) or X1 ∈ rr(ϕ2)
⇒ β(Xi ) ∈ adom(ϕ,D) by induction

ϕ := ∃Yϕ1:

By assumption rr(ϕ) 6= ⊥, so rr(ϕ1) = rr(ϕ) ∪ {Y }
Therefore rr(ϕ) ⊆ rr(ϕ1) and claim 1 follows by induction
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Proof of Part 2 (ctd)

Having shown claim 1, we now show that claim 2

D |=d ϕ[β]⇐⇒ D |=adom(ϕ,D)∪β(free(ϕ)) ϕ[β]

holds for composed formulas, by induction on ϕ

The cases ¬ϕ1, ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2 are trivial

It remains to show claim 2 for ∃Yϕ1

“⇐” follows by induction and adom(ϕ,D) ∪ β(free(ϕ)) ⊆ d

“⇒” Assume that D |=d ϕ[β]
⇒ there is a ∈ d with D |=d ϕ1[β(Y /a)]

It holds that Y ∈ rr(ϕ1), so claim 1 implies that a ∈ adom(ϕ1,D)
Now let β′ := β(Y /a)

⇒ adom(ϕ1,D) ∪ β′(free(ϕ1)) = adom(ϕ,D) ∪ β(free(ϕ))
By induction we then have D |=adom(ϕ,D)∪β(free(ϕ)) ϕ1[β′]
And also: D |=adom(ϕ,D)∪β(free(ϕ)) ϕ[β]

This completes claim 2
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Proof of Part (b) (ctd)

It remains to show that the two claims

1 if Xi ∈ rr(ϕ) and D |=d ϕ[β], then β(x1) ∈ adom(ϕ,D), and

2 D |=d ϕ[β]⇐⇒ D |=adom(ϕ,D)∪β(free(ϕ)) ϕ[β]

imply part (b) of the proposition, i.e. imply that for every range-restricted
formula ϕ the query {<X> | ϕ} is range-restricted.

Let ϕ be range-restricted and w.l.o.g. in SRNF, so rr(ϕ) = free(ϕ)

Using claim 1 we conclude that the query result contains only values from
adom(ϕ,D)

Now consider d1, d2 with adom(ϕ,D) ⊆ di ⊆ dom for 1 ≤ i ≤ 2

Let D |=d1 ϕ[β] for some β

Using claim 1 we conclude that β(free(ϕ)) ⊆ adom(ϕ,D)

Using claim 2 we conclude that D |=d1 ϕ[β]⇐⇒ D |=adom(ϕ,D) ϕ[β]

Hence, JϕKd1 (D) = JϕKadom(D)

Analogously: JϕKd2 (D) = JϕKadom(D) and thus JϕKd1 (D) = JϕKd2 (D)

⇒ ϕ is range-restricted
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Equivalence NR-Datalog¬ and Relational Algebra

When combining Lemma (∗1) and Lemma (∗2) we immediately obtain the
central result of this section:2

Theorem

Relational algebra and NR-Datalog¬ have exactly the same expressive power.

2Recall: Lemmata (∗3) and (∗4) were used to prove Lemma (∗2).
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Datalog¬: Well-founded Semantics

Limitations of the Stratified Semantics

Drawback: some Datalog¬ don’t have a stratified semantics

We now present a well-founded semantics that is defined for every
Datalog¬ program

Whenever a Datalog¬ program is stratified, its stratified and its
well-founded semantics coincide
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Datalog¬: Well-founded Semantics

Example: Board Game

(A) Consider the rule

win(X )← move(X ,Y ),¬win(Y )

and the input E(move) = {(a, b), (b, c), (c , d)}.

Question: which instances of win are a model of the rule when given this input?

The models win := {a, c} and win := {b, d} are minimal.

The model win := {a, c} is minimal and supports; it corresponds to our
intuition.
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Datalog¬: Well-founded Semantics

Example (ctd)

(B) Consider the same rule

win(X )← move(X ,Y ),¬win(Y )

and the input E(move) := {(a, b), (b, c), (a, c)}.

The model win = {a, b} is minimal.
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Datalog¬: Well-founded Semantics

Example (ctd)

(C) Consider the same rule

win(X )← move(X ,Y ),¬win(Y )

Now let E(move) := {(a, b), (b, c), (c , a), (a, d), (d , e), (d , f ), (f , g)}.

Are there “intuitive” models? If so, which ones?

The following 3-ary model is intuitively convincing:

true: win(d),win(f )
false: win(e),win(g)
undefined: win(a),win(b),win(c)
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Datalog¬: Well-founded Semantics

Example (ctd)

(C) Consider the same rule

win(X )← move(X ,Y ),¬win(Y )

Now let E(move) := {(a, b), (b, c), (c , a), (a, d), (d , e), (d , f ), (f , g)}.

Are there “intuitive” models? If so, which ones?

The following 3-ary model is intuitively convincing:

true: win(d),win(f )
false: win(e),win(g)
undefined: win(a),win(b),win(c)
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Datalog¬: Well-founded Semantics

Outlook

We start with programs that contain their input as part of their definition,
subsequently discuss

3− ary instances together with their notion of truth,

then 3− ary minimal models of Datalog (without negation),

then 3− ary minimal (3-stable) models of Datalog¬,

and finally present a fixpoint operator for the computation of the semantics.
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Datalog¬: Well-founded Semantics

Programs Extended by Their Input

Let Π be a Datalog¬ program and E be an instance over the EDB relations.
Let ΠE be Π extended by E as follows.

R(a1, . . . , an) ∈ E =⇒ R(a1, . . . , an)← true is a rule in ΠE .

It holds that Π(E) = ΠE(∅).

Let Π be a program with input E . In the following, we only consider ΠE .
When talking about a program Π only, we tacitly assume that Π already
contains the respective input.
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Datalog¬: Well-founded Semantics

Ground instances

Let B(Π) be the set of all facts of the form R(a1, . . . , an), where R is a
relation in Π and a1, . . . , an are constants appearing in Π.

ground(Π), the ground instance of Π, is obtained by instantiating the rules
from Π with all possible combinations of constants from Π.

The ground literals in the body and head of rules in ground(Π) therefore
are facts in B(Π).
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Datalog¬: Well-founded Semantics

3-ary Instances

3-ary instances are represented by specifying the facts that are true and the
facts that are fales; all unspecified facts have an unknown truth value.

Shortcut notation for truth values:

true : 1 false : 0 undefined : 1/2

To determine the truth value of a formula α that is composed out of a boolean
combination of two formulas β, γ w.r.t. to some instance I, we extend I to Î:

Î(β ∧ γ) = min{Î(β), Î(γ)}
Î(β ∨ γ) = max{Î(β), Î(γ)}
Î(¬β) = 1− Î(β)

Î(β ← γ) =

{
1 if Î(γ) ≤ Î(β),
0 otherwise

p ← q and p ∨ ¬q now have different truth values!
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Datalog¬: Well-founded Semantics

Definition: 3-ary Instances

A 3-ary instance I over (the schema of) Π is a total mapping of B(Π) into

{0, 1, 1/2}, where I1, I0, I1/2 are the corresponding subsets of I in dependence
of their truth value.

Example: 3-ary Instance

Π : win(X )← move(X ,Y ),¬win(Y )

ground(Π) :

win(a)← move(a, d),¬win(d)
win(a)← move(a, b),¬win(b)
win(d)← move(d , e),¬win(e)
...

move := {(a, b), (b, c), (c , a), (a, d), (d , e), (d , f ), (f , g)}
3-ary Instance: I1(win) := {d , f }, I0(win) := {e, g}, I1/2(win) := {a, b, c}
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Datalog¬: Well-founded Semantics

Definition: 3-ary Instances

A 3-ary instance I over (the schema of) Π is a total mapping of B(Π) into

{0, 1, 1/2}, where I1, I0, I1/2 are the corresponding subsets of I in dependence
of their truth value.

Example: 3-ary Instance

Π : win(X )← move(X ,Y ),¬win(Y )

ground(Π) :

win(a)← move(a, d),¬win(d)
win(a)← move(a, b),¬win(b)
win(d)← move(d , e),¬win(e)
...

move := {(a, b), (b, c), (c , a), (a, d), (d , e), (d , f ), (f , g)}
3-ary Instance: I1(win) := {d , f }, I0(win) := {e, g}, I1/2(win) := {a, b, c}
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Datalog¬: Well-founded Semantics

Additional Definitions

Consider a program Π and an 3-ary instance I.

I is called 3-ary model of Π, if I satisfies all rules in ground(Π).

A 3-ary instance I is called total (or 2-ary), if I1/2 = ∅.
We define the order ≺, which sorts two 3-ary instances I, J as follows.

I ≺ J exactly if for every A ∈ B(Π) : I(A) ≤ J (A).

The minimal 3-ary instance w.r.t. ≺ assigns to each atom the truth value
0. We denote this instance as ⊥.
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Datalog¬: Well-founded Semantics

3-ary minimal Models of Datalog

A Datalog program Π is called 3-extended, if in the body of the rules the truth
values 0, 1/2, and 1 may appear as literals.

The 3-ary immediate consequence operator 3TΠ of a Datalog program Π is a
mapping over 3-ary instances I defined as follows. Let A ∈ B(Π).

3TΠ(I)(A) :=



1 there is a rule A← body in ground(Π),

where Î(body) = 1,
0 for every rule A← body in ground(Π) it

holds that Î(body) = 0 or there is no rule
in ground(Π) having A in its head ,

1/2 otherwise.
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Datalog¬: Well-founded Semantics

Theorem

Let Π be a 3-ary Datalog program.

3TΠ is monotonic and the sequence {3T i
Π(⊥)}i>0 is increasing and

converges towards the minimal fixpoint of 3TΠ.

Π has a unique minimal 3-ary model. This model is identical to the minimal
fixpoint.
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Datalog¬: Well-founded Semantics

Example

Consider the 3-ary Datalog program Π:

p ← 1/2
p ← q, 1/2
q ← p, r
q ← p, s
s ← q
r ← 1

Then

3TΠ({¬p,¬q,¬r ,¬s}) = {¬q, r ,¬s}
3TΠ({¬q, r ,¬s}) = {r ,¬s}
3TΠ({r ,¬s}) = {r}
3TΠ({r}) = {r}
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Datalog¬: Well-founded Semantics

3-stable Models of Datalog¬

Let Π be a Datalog¬ program and I a 3-ary instance.

The positivized ground version of Π w.r.t. I, pg(Π, I), is the 3-ary Datalog
program resulting from ground(Π) when replacing every negative literal ¬A
by Î(¬A), i.e. by 0, 1, 1/2.

We denote the minimal fixpoint pg(Π, I)(⊥) of pg(Π, I) by conseqΠ(I),
where we assume truth values from I for the negative literals.

A 3-ary instance I is called 3-stable model of a Datalog¬ program Π, if

conseqΠ(I) = I.
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Datalog¬: Well-founded Semantics

Example

Consider the Datalog¬ program Π:

p ← ¬r
q ← ¬r , p
s ← ¬t
t ← q,¬s
u ← ¬t, p, s

and the 3-ary instance

I := {p, q,¬r}
We obtain for pg(Π, I):

p ← 1
q ← 1, p
s ← 1/2
t ← q, 1/2
u ← 1/2, p, s

and finally:

conseqΠ(I) = pg(Π, I)(⊥) = 3T 3
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Datalog¬: Well-founded Semantics

Remark

Datalog¬ programs may have multiple 3-stable models.

Definition: Well-founded Semantics

Let Π be a Datalog¬ program. The well-founded semantics of Π is the 3-ary
instance that contains exactly those positive and negative facts contained in all
3-stable models of Π.

We write Πwf , or Πwf (E), if an input E is explicitly given for some program Π.
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Datalog¬: Well-founded Semantics

Example

Consider the Datalog¬ program Π:

p ← ¬r
q ← ¬r , p
s ← ¬t
t ← q,¬s
u ← ¬t, p, s

This program has three 3-stable models:

I1 := {p, q, t,¬r ,¬s,¬u}
I2 := {p, q, s,¬r ,¬t, u}
I3 := {p, q,¬r}

The well-founded semantics of Π is given by I3.
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Datalog¬: Fixpoint Computation

Alternating Fixpoint

In practice, it is unfeasible to compute all 3-stable models in order to compute
the well-founded semantics. In the following we discuss a different approach
called alternating fixpoint computation.

Consider the sequence {I i}i≥0 of 3-ary instance for some program Π:

I0 := ⊥,
I i+1 := conseqΠ(I i ).
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Example

Consider the program Π consisting of the rule

win(X )← move(X ,Y ),¬win(Y )

and the inputs

E1(move) := {(a, b), (b, a), (a, c)}
E2(move) := {(a, b), (b, a), (a, c), (c , d)}

The resulting ground versions are ground(ΠE1 ,⊥) and ground(ΠE2 ,⊥) are
computed as follows:3

move(a, b) ←
move(b, a) ←
move(a, c) ←
win(a) ← move(a, b),¬win(b)
win(a) ← move(a, c),¬win(c)
win(b) ← move(b, a),¬win(a)

move(a, b) ←
move(b, a) ←
move(a, c) ←
move(c, d) ←
win(a) ← move(a, b),¬win(b)
win(a) ← move(a, c),¬win(c)
win(b) ← move(b, a),¬win(a)
win(c) ← move(c, d),¬win(d)

3Rules containing unsatisfiable subgoals of move are omitted.
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Remarks

If I is total, then conseqΠ(I) is total. Since ⊥ is total, all I i are total.

conseqΠ(I) is antimonotonic. This means, I ≺ J implies
conseqΠ(I) � conseqΠ(J ).

I0 under-estimates (over-estimates) the positive (negative) facts in Π’s
answer set; accordingly, I1 over-estimates (under-estimates) the
corresponding positive (negative) facts in Π’s answer set

It holds that I0 ≺ I1 and I0 ≺ I2, so (due to the antimonotonic):

I0 ≺ I2 ≺ I4 ≺ . . .
I1 � I3 � I5 � . . .
I0 ≺ I1, I2 ≺ I3, I4 ≺ I5, . . .

Let I∗ be the limit of the increasing sequence {I2i}i≥0 and I∗ be the limit
of the decreasing sequence {I2i+1}i≥0. It holds that I∗ ≺ I∗.
Let I∗∗ = (I∗)1 ∪ (I∗)0.
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Datalog¬: Fixpoint Computation

Example

Consider the Datalog¬ program Π:

p ← ¬r
q ← ¬r , p
s ← ¬t
t ← q,¬s
u ← ¬t, p, s

For a given I we first have to specify the positivized ground version pg(Π, I),
where I0 = ⊥.
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Datalog¬: Fixpoint Computation

Example (ctd)

(1) pg(Π,⊥) : p ← 1
q ← 1, p
s ← 1 −→ I1 = {p, q,¬r , s, t, u}
t ← q, 1
u ← 1, p, s

(2) pg(Π, I1) : p ← 1
q ← 1, p
s ← 0 −→ I2 = {p, q,¬r ,¬s,¬t,¬u}
t ← q, 0
u ← 0, p, s
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Datalog¬: Fixpoint Computation

Example (ctd)

(3) pg(Π, I2) : p ← 1
q ← 1, p
s ← 1 −→ I3 = {p, q,¬r , s, t, u}
t ← q, 1
u ← 1, p, s

(4) pg(Π, I3) : p ← 1
q ← 1, p
s ← 0 −→ I4 = {p, q,¬r ,¬s,¬t,¬u}
t ← q, 0
u ← 0, p, s

I∗∗ = {p, q,¬r}
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Datalog¬: Fixpoint Computation

Lemma

Let Π be a Datalog¬ program.

I∗∗ is a 3-stable model of Π.

It holds that I∗∗ = Πwf (∅), i.e. I∗∗ implements the well-founded semantics
of Π.

Theorem

Let Π be a stratified Datalog¬ program. Then Πwf (∅) is total and for every total
input E : Πwf (E) = Πstrat(E).
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Datalog¬: Fixpoint Computation

Example

Consider the program Π:

greenPath(X ,Y )← green(X ,Y )
greenPath(X ,Y )← greenPath(X , Z), greenPath(Z ,Y )
bingo(X ,Y )← red(X ,Y ),¬greenPath(X ,Y )

and the input: green := {(1, 2)}, red := {(1, 2), (2, 3)}

pg(Π,⊥) realizes the assumption that the facts from stratum 1 that are
addressed in stratum 2 are all wrong, by considering all negative literals as true
without assuming the corresponding positive literals as false.

Hence, I1 := conseqΠ(⊥) over-estimates the facts that basically could be
derived in stratum 2.

pg(Π, I1) considers only those facts from stratum 1 as wrong that could not
have been derived in stratum 1. I2 := conseqΠ(I1) thus gives us the stratified
semantics of Π.
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Example

Consider the program Π:
p(1, 2)←
q(X )← p(X ,Y )
r(X )← ¬q(X )
t(X )← ¬r(X )

together with its ground instance and the positivized ground versions pg(Π, I):4

ground(Π)
p(1, 2)←
q(1)← p(1, 2)
r(1)← ¬q(1)
r(2)← ¬q(2)
t(1)← ¬r(1)
t(2)← ¬r(2)

pg(Π,⊥)
p(1, 2)←
q(1)← p(1, 2)
r(1)← 1
r(2)← 1
t(1)← 1
t(2)← 1

pg(Π, I1)
p(1, 2)←
q(1)← p(1, 2)
r(1)← 0
r(2)← 1
t(1)← 0
t(2)← 0

pg(Π, I2)
p(1, 2)←
q(1)← p(1, 2)
r(1)← 0
r(2)← 1
t(1)← 1
t(2)← 0

pg(Π, I3)
p(1, 2)←
q(1)← p(1, 2)
r(1)← 0
r(2)← 1
t(1)← 1
t(2)← 0

The well-founded model is total and given by {p(1, 2), q(1), r(2), t(1)}5; this
corresponds to the stratified semantics.

4Rules containing non-satisfiable subgoals are omitted.
5All facts that are not listed are wrong.
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Overview: Expressiveness of Datalog Fragments

(= sets of CQs)

Note: all inclusions in the diagram are strict

Not shown in the diagram: NR-Datalog¬

Equivalent to relational algebra
Contained in Stratified Datalog¬

Uncomparable to Datalog+
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